41 research outputs found

    Early findings from a large-scale user study of CHESTNUT: Validations and implications

    Get PDF
    Towards a serendipitous recommender system with user-centred understanding, we have built CHESTNUT , an Information Theory-based Movie Recommender System, which introduced a more comprehensive understanding of the concept. Although off-line evaluations have already demonstrated that CHESTNUT has greatly improved serendip-ity performance, feedback on CHESTNUT from real-world users through online services are still unclear now. In order to evaluate how serendip-itous results could be delivered by CHESTNUT , we consequently designed , organized and conducted large-scale user study, which involved 104 participants from 10 campuses in 3 countries. Our preliminary feedback has shown that, compared with mainstream collaborative filtering techniques, though CHESTNUT limited users' feelings of unex-pectedness to some extent, it showed significant improvement in their feelings about certain metrics being both beneficial and interesting, which substantially increased users' experience of serendipity. Based on them, we have summarized three key takeaways, which would be beneficial for further designs and engineering of serendipitous recommender systems, from our perspective. All details of our large-scale user study could be found at https://github.com/unnc-idl-ucc/Early-Lessons-From-CHESTNU

    CHESTNUT: Improve serendipity in movie recommendation by an Information Theory-based collaborative filtering approach

    Get PDF
    The term serendipity has been understood narrowly in the Recommender System. Applying a user-centered approach, user-friendly serendipitous recommender systems are expected to be developed based on a good understanding of serendipity. In this paper, we introduce CHESTNUT , a memory-based movie collaborative filtering system to improve serendipity performance. Relying on a proposed Information Theory-based algorithm and previous study, we demonstrate a method of successfully injecting insight, unexpectedness and usefulness, which are key metrics for a more comprehensive understanding of serendipity, into a practical serendipitous runtime system. With lightweight experiments, we have revealed a few runtime issues and further optimized the same. We have evaluated CHESTNUT in both practicability and effectiveness , and the results show that it is fast, scalable and improves serendip-ity performance significantly, compared with mainstream memory-based collaborative filtering. The source codes of CHESTNUT are online at https://github.com/unnc-idl-ucc/CHESTNUT/

    Fast character modeling with sketch-based PDE surfaces

    Get PDF
    © 2020, The Author(s). Virtual characters are 3D geometric models of characters. They have a lot of applications in multimedia. In this paper, we propose a new physics-based deformation method and efficient character modelling framework for creation of detailed 3D virtual character models. Our proposed physics-based deformation method uses PDE surfaces. Here PDE is the abbreviation of Partial Differential Equation, and PDE surfaces are defined as sculpting force-driven shape representations of interpolation surfaces. Interpolation surfaces are obtained by interpolating key cross-section profile curves and the sculpting force-driven shape representation uses an analytical solution to a vector-valued partial differential equation involving sculpting forces to quickly obtain deformed shapes. Our proposed character modelling framework consists of global modeling and local modeling. The global modeling is also called model building, which is a process of creating a whole character model quickly with sketch-guided and template-based modeling techniques. The local modeling produces local details efficiently to improve the realism of the created character model with four shape manipulation techniques. The sketch-guided global modeling generates a character model from three different levels of sketched profile curves called primary, secondary and key cross-section curves in three orthographic views. The template-based global modeling obtains a new character model by deforming a template model to match the three different levels of profile curves. Four shape manipulation techniques for local modeling are investigated and integrated into the new modelling framework. They include: partial differential equation-based shape manipulation, generalized elliptic curve-driven shape manipulation, sketch assisted shape manipulation, and template-based shape manipulation. These new local modeling techniques have both global and local shape control functions and are efficient in local shape manipulation. The final character models are represented with a collection of surfaces, which are modeled with two types of geometric entities: generalized elliptic curves (GECs) and partial differential equation-based surfaces. Our experiments indicate that the proposed modeling approach can build detailed and realistic character models easily and quickly

    Profile of MicroRNAs following Rat Sciatic Nerve Injury by Deep Sequencing: Implication for Mechanisms of Nerve Regeneration

    Get PDF
    Unlike the central nervous system, peripheral nerves can regenerate when damaged. MicroRNA (miRNA) is a novel class of small, non-coding RNA that regulates gene expression at the post-transcriptional level. Here, we report regular alterations of miRNA expression following rat sciatic nerve injury using deep sequencing. We harvested dorsal root ganglia tissues and the proximal stumps of the nerve, and identified 201 and 225 known miRNAs with significant expression variance at five time points in these tissues after sciatic nerve transaction, respectively. Subsequently, hierarchical clustering, miRNA expression pattern and co-expression network were performed. We screened out specific miRNAs and further obtained the intersection genes through target analysis software (Targetscan and miRanda). Moreover, GO and KEGG enrichment analyses of these intersection genes were performed. The bioinformatics analysis indicated that the potential targets for these miRNAs were involved in nerve regeneration, including neurogenesis, neuron differentiation, vesicle-mediated transport, homophilic cell adhesion and negative regulation of programmed cell death that were known to play important roles in regulating nerve repair. Finally, we combined differentially expressed mRNA with the predicted targets for selecting inverse miRNA-target pairs. Our results show that the abnormal expression of miRNA may contribute to illustrate the molecular mechanisms of nerve regeneration and that miRNAs are potential targets for therapeutic interventions and may enhance intrinsic regenerative ability
    corecore